Importance of metabolic rate to the relationship between the number of genes in a functional category and body size in Peto's paradox for cancer

نویسندگان

  • Kazuhiro Takemoto
  • Masato Ii
  • Satoshi S Nishizuka
چکیده

Elucidation of tumour suppression mechanisms is a major challenge in cancer biology. Therefore, Peto's paradox, or low cancer incidence in large animals, has attracted focus. According to the gene-abundance hypothesis, which considers the increase/decrease in cancer-related genes with body size, researchers evaluated the associations between gene abundance and body size. However, previous studies only focused on a few specific gene functions and have ignored the alternative hypothesis (metabolic rate hypothesis): in this hypothesis, the cellular metabolic rate and subsequent oxidative stress decreases with increasing body size. In this study, we have elected to explore the gene-abundance hypothesis taking into account the metabolic rate hypothesis. Thus, we comprehensively investigated the correlation between the number of genes in various functional categories and body size while at the same time correcting for the mass-specific metabolic rate (Bc). A number of gene functions that correlated with body size were initially identified, but they were found to be artefactual due to the decrease in Bc with increasing body size. By contrast, immune system-related genes were found to increase with increasing body size when the correlation included this correction for Bc. These findings support the gene-abundance hypothesis and emphasize the importance of also taking into account the metabolic rate when evaluating gene abundance-body size relationships. This finding may be useful for understanding cancer evolution and tumour suppression mechanisms as well as for determining cancer-related genes and functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Importance of metabolic rate to the relationship between the number of genes in a functional category and body size in Peto ’ s paradox for cancer Kazuhiro Takemoto

Elucidation of tumour suppression mechanisms is a major challenge in cancer biology. Therefore, Peto’s paradox, or low cancer incidence in large animals, has attracted focus. According to the gene-abundance hypothesis, which considers the increase/decrease in cancer-related genes with body size, researchers evaluated the associations between gene abundance and body size. However, previous studi...

متن کامل

A metabolic perspective of Peto's paradox and cancer

The frequency of cancer is postulated to be proportional to the number of cells an animal possesses, as each cell is similarly exposed to mutagens with every cell division. Larger animals result from more cell divisions with more mutagenic exposure, and hence are expected to have higher frequencies of cancer. Yet, as stipulated by Peto's paradox, larger animals do not have the higher rates of c...

متن کامل

Cell size and cancer: a new solution to Peto's paradox?

Cancer, one of the leading health concerns for humans, is by no means a human-unique malady. Accumulating evidence shows that cancer kills domestic and wild animals at a similar rate to humans and can even pose a conservation threat to certain species. Assuming that each physiologically active and proliferating cell is at risk of malignant transformation, any evolutionary increase in the number...

متن کامل

Solutions to Peto's paradox revealed by mathematical modelling and cross-species cancer gene analysis

Whales have 1000-fold more cells than humans and mice have 1000-fold fewer; however, cancer risk across species does not increase with the number of somatic cells and the lifespan of the organism. This observation is known as Peto's paradox. How much would evolution have to change the parameters of somatic evolution in order to equalize the cancer risk between species that differ by orders of m...

متن کامل

Oxford and the Savannah: can the hippo provide an explanation for Peto's paradox?

Peto's paradox is the counterintuitive finding that increasing body mass and thereby cell number does not correlate with an increase in cancer incidence across different species. The Hippo signaling pathway is an evolutionarily conserved system that determines organ size by regulating apoptosis and cell proliferation. It also affects cell growth by microRNA-29 (miR-29)-mediated cross-talk to th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2016